
GARMIN INTERNATIONAL

Garmin Connect Developer
Program

OAuth Specification
Version 1.0.1

CONFIDENTIAL

Contents
User Authorization (OAuth) ... 3

Garmin Connect User Authorization .. 3

Acquire Unauthorized Request Token and Token Secret ... 3

User Authorization of Request Token ... 6

Acquire User Access Token and Token Secret .. 7

Signing requests ... 9

Get User ID ... 10

User Authorization (OAuth)

This section details the process of requesting access to wellness and activity data of Garmin Connect

accounts. Accessing data of a Garmin Connect account requires a User Access Token for each Garmin

Connect account. Garmin follows OAuth v1.0a.

Note:

Implementing OAuth signing manually can be quite complex. It is recommended that all partner integrations

leverage an existing OAuth client library. A list of OAuth libraries that supposed OAuth v1.0 by language is

maintained at https://oauth.net/1/.

User ID must be used as a main user identifier.

Garmin Connect User Authorization
The Garmin Connect user authorization process must be completed once for each Connect user to give

that user the opportunity to consent to sharing their Garmin data. The steps to perform Garmin Connect

user authorization are as follows:

1. Acquire Unauthorized Request Token and Token Secret

2. User Authorization of Request Token
3. Acquire User Access Token and Token Secret
4. Get User ID

Acquire Unauthorized Request Token and Token Secret

The first step in getting user consent to share Garmin data is acquiring a request token and token secret.

https://oauth.net/1/
https://oauth.net/1/

This request token does not have the ability to access data, nor is it user-specific yet.

Specification: https://oauth.net/core/1.0a/#auth_step1

URL (POST): https://connectapi.garmin.com/oauth-service/oauth/request_token

Authorization header:

To get a Request Token it is required to send the request with a valid Authorization header according to

OAuth 1.0a

Common OAuth libraries handle the following steps automatically:

 • Generate a Signature Base String

The Signature Base String is a consistent reproducible concatenation of the request elements

into a single string and needs to be encoded as defined in Parameter Encoding.

The Signature Base String contains the HTTP method (POST), the URL and the normalized

parameters.

The request parameters are sorted alphabetically and concatenated into a normalized string:

o oauth_consumer_key

The consumer key provided by Garmin.

o oauth_signature_method

The signature method which is used to sign the request (HMAC-SHA1).

o oauth_nonce

A random string, uniquely generated for each request.

o oauth_timestamp

The current timestamp (number of seconds since January 1, 1970 00:00:00 GMT).

o oauth_version

This must bet set to 1.0

Example:

Normalized parameters:

oauth_consumer_key=cb60d7f5-4173-7bcd-ae02-
e5a52a6940ac&oauth_nonce=kbki9sCGRwU&oauth_signature_method=HMACSHA1&oauth_time

stamp=1484837456&oauth_version=1.0

https://oauth.net/core/1.0a/#auth_step1
https://oauth.net/core/1.0a/#auth_step1
https://oauth.net/core/1.0a/#auth_step1
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters

Signature Base String (percent-encoded):
POST&https%3A%2F%2Fconnectapi.garmin.com%2Foauth-
service%2Foauth%2Frequest_token&oauth_consumer_key%3Dcb60d7f5-4173-7bcd-

ae02e5a52a6940ac%26oauth_nonce%3Dkbki9sCGRwU%26oauth_signature_method%3DHMACSHA

1%26oauth_timestamp%3D1484837456%26oauth_version%3D1.0

• Calculate HMAC-SHA1 signature

The Signature Base String and the Consumer Secret are used to calculate the HMAC-SHA1 as

defined in RFC 2104 where the Signature Base String is the text and the key is the Consumer

Secret, followed by an '&' character (ASCII code 38). The resulting octet string needs to be

base64-encoded as defined in RFC 2045 section 6.8, then encoded like defined in Parameter

Encoding.

Example:

Consumer Secret, including trailing '&' character:

3LFNjTLbGk5QqWVoypl8S2wAYcSL586E285&

Base64-encoded and parameter-encoded signature:

%2BHlCpVX8Qgdw5Djfw0W30s7pfrY%3D

• Create HTTP Authorization header

The OAuth Protocol Parameters are sent in the Authorization header in the following way:

o Parameter names and values must be encoded like defined in Parameter Encoding. o

Parameter values must be enclosed with double quote characters: " (ASCII code 34) o

Parameters are separated by a comma character (ASCII code 44) and optional whitespace

Example:

Authorization: OAuth oauth_version="1.0", oauth_consumer_key="cb60d7f5-4173-
7bcd-ae02-e5a52a6940ac", oauth_timestamp="1484837456",

oauth_nonce="kbki9sCGRwU", oauth_signature_method="HMAC-SHA1",

oauth_signature="%2BHlCpVX8Qgdw5Djfw0W30s7pfrY%3D"

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters

A complete request sent with the command line tool ‘cURL’ looks like that:

curl -X POST -v –header 'Authorization: OAuth oauth_version="1.0",

oauth_consumer_key="cb60d7f5-4173-7bcd-ae02-e5a52a6940ac",

oauth_timestamp="1484837456", oauth_nonce="kbki9sCGRwU",

oauth_signature_method="HMAC-SHA1",

oauth_signature="%2BHlCpVX8Qgdw5Djfw0W30s7pfrY%3D"'

https://connectapi.garmin.com/oauth-service/oauth/request_token

Response oauth_token=<request token>&oauth_token_secret=<request token

secret>

User Authorization of Request Token

Once a request token has been generated, user consent is required to allow the token to be exchanged

for an access token. This process occurs on the Garmin Connect oauthConfirm page as users only enter

their login credentials on the Connect servers and never on third-party sites. Once the authentication

process is complete, the user is redirected back to the partner's site. At this point in time the request

token is authorized with the user's account.

After the user authenticates with Garmin Connect and grants permission for partner access the partner

will be notified that the Request Token has been authorized and ready to be exchanged for an Access

Token. If the user denies access the Partner will not get the required ‘verifier’.

To make sure that the user granting access is the same user returning back to the partner to complete

the process Garmin Connect will generate a verification code. This will be a complex value passed to the

partner via the user and is required to complete the authorization process.

By default, Garmin Connect will honor the oauth callback URL configured when creating the consumer

key through the Developer Portal. This pre-configured callback URL may be overridden using the URL

parameter ‘oauth_callback’ if desired.

• oauth_token o The Request Token the user authorized or denied.

• oauth_verifier o The verification code or ‘NULL’ if the user denied access permissions

The callback URL may include partner provided query parameters. Garmin Connect will retain them

unmodified and append the OAuth parameters to the existing query. If providing an oauth_callback, please

make sure it will be encoded.

Specification: https://oauth.net/core/1.0a/#auth_step2

https://oauth.net/core/1.0a/#auth_step2
https://oauth.net/core/1.0a/#auth_step2
https://oauth.net/core/1.0a/#auth_step2

URL (GET): https://connect.garmin.com/oauthConfirm

Request Parameters:

• oauth_token (required): The Request token from previous step

• oauth_callback (optional)

Response

<Redirect URL>?oauth_token=<request token>&oauth_verifier=<alphanumeric value>

Acquire User Access Token and Token Secret

Request tokens are valid to link to a user's account, but not to acquire their data. To get protected

resources a user access token is required. In this step, a user-authorized request token and verifier are

exchanged for a user access token and token secret. This user access token can be used to acquire the

authenticated user's protected resources using the Garmin APIs. This access token should be stored and

will be used to request and/or associate summary data with a specific user. The user access token is valid

until the user removes access permissions on Garmin Connect or a new User Access Token is created for

the same Consumer Key and Garmin Connect user by performing the OAuth process again.

Specification: https://oauth.net/core/1.0a/#auth_step3

URL (POST): https://connectapi.garmin.com/oauth-service/oauth/access_token

Requesting the User Access Token is very similar to the steps to get the Request Token. The difference is

that the signature is calculated using the Request Token and Secret as well as the verifier from the

previous step.

Authorization header:

To get a UserAccessToken it is required to send the request with a valid Authorization header according

to OAuth 1.0a

Please see chapter 0 for details.

 • Generate a Signature Base String from the following parameters:

o oauth_consumer_key

The consumer key provided by Garmin.

o oauth_token

The request token obtained in first authorization step

o oauth_signature_method

https://connect.garmin.com/oauthConfirm
https://connect.garmin.com/oauthConfirm
https://connect.garmin.com/oauthConfirm
https://oauth.net/core/1.0a/#auth_step3
https://oauth.net/core/1.0a/#auth_step3
https://oauth.net/core/1.0a/#auth_step3
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token

The signature method which is used to sign the request (HMAC-SHA1).

o oauth_nonce

A random string, uniquely generated for each request.

o oauth_timestamp

The current timestamp (number of seconds since January 1, 1970 00:00:00 GMT).

o oauth_version

This must bet set to 1.0

o oauth_verifier

The verification code received from Garmin Connect in second authorization step

Example:

Normalized parameters:

oauth_consumer_key=cb60d7f5-4173-7bcd-ae02-
e5a52a6940ac&oauth_nonce=2lRbgVyTAgh&oauth_signature_method=HMACSHA1&oauth_time

stamp=1484913680&oauth_token=760d85bd-b86e-4da6-

b58bba57a542b23b&oauth_verifier=wvDJQmLSwY&oauth_version=1.0

Signature Base String (percent-encoded):

POST&http%3A%2F%2Fconnectapi.garmin.com%2Foauth-
service%2Foauth%2Faccess_token&oauth_consumer_key%3Dcb60d7f5-4173-7bcd-

ae02e5a52a6940ac%26oauth_nonce%3D2lRbgVyTAgh%26oauth_signature_method%3DHMACSHA

1%26oauth_timestamp%3D1484913680%26oauth_token%3D760d85bd-b86e-4da6-

b58bba57a542b23b%26oauth_verifier%3DwvDJQmLSwY%26oauth_version%3D1.0

• Calculate HMAC-SHA1 signature

Please see first authorization step for details.

Example:

Consumer Secret and Request Token Secret, separated with '&' character:

3LFNjTLbGk5QqWVoypl8S2wAYcSL586E285&VP2ZGuciICb7Lu769KWOP0wNMxxoLUZdAbq

Base64-encoded and parameter-encoded signature:

zSAEERG2NNoQaVjVthJ5xP4XcCM%3D

• Create HTTP Authorization header

Please see first authorization step for details.

Example:

Authorization: OAuth oauth_verifier="wvDJQmLSwY", oauth_version="1.0",
oauth_consumer_key="cb60d7f5-4173-7bcd-ae02-e5a52a6940ac",

oauth_token="760d85bd-b86e-4da6-b58b-ba57a542b23b",

oauth_timestamp="1484913680", oauth_nonce="2lRbgVyTAgh",

oauth_signature_method="HMAC-SHA1",

oauth_signature="zSAEERG2NNoQaVjVthJ5xP4XcCM%3D"

A complete request sent with the command line tool ‘cURL’ looks like that:

curl -X POST -v –header 'Authorization: OAuth oauth_verifier="wvDJQmLSwY",

oauth_version="1.0", oauth_consumer_key="cb60d7f5-4173-7bcd-ae02e5a52a6940ac",

oauth_token="760d85bd-b86e-4da6-b58b-ba57a542b23b",

oauth_timestamp="1484913680", oauth_nonce="2lRbgVyTAgh",

oauth_signature_method="HMAC-SHA1",

oauth_signature="zSAEERG2NNoQaVjVthJ5xP4XcCM%3D"'

https://connectapi.garmin.com/oauth-service/oauth/access_token

Response oauth_token=<access token>

&oauth_token_secret=<access token secret>

Signing requests

Requests to Garmin APIs must be signed using both the provided consumer key/secret and the User

Access

Token/Secret acquired during the authorization phase described above. The User Access Token also

identifies the Garmin Connect Account the request refers to.

Specification: https://oauth.net/core/1.0a/#signing_process

Request Parameters (placed in the Authorization header):

https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process

• oauth_consumer_key

The consumer key provided by Garmin.

• oauth_token

The User Access Token acquired during the authorization phase described in third authorization

step

• oauth_signature_method

The signature method the partner used to sign the request. This must be HMAC-SHA1.

• oauth_signature

The signature as defined in Signing Requests (https://oauth.net/core/1.0a/#signing_process) Signature

Base string example:
GET&https%3A%2F%2Fhealthapi.garmin.com%2Fwellness-api%2Frest%2Fepochs&oauth_consumer_key%3Deb60d6a5-0172-4bbd-
ae02-d5a5ea2140fa%26oauth_nonce%3D2464567464%26oauth_signature_method%3DHMAC-
SHA1%26oauth_timestamp%3D1473668857%26oauth_token%3D07c6dd26-a57f-4c39-8fd3-

6ac81d10fde6%26oauth_version%3D1.0%26uploadEndTimeInSeconds%3D1473668824%26uploadStartTimeInSeconds%3D1473582424

• oauth_timestamp

As defined in Nonce and Timestamp: https://oauth.net/core/1.0a/#nonce

Requests where the timestamp differs more than 10 minutes from the current UTC time will fail.

• oauth_nonce

As defined in Nonce and Timestamp: https://oauth.net/core/1.0a/#nonce

• oauth_version

This parameter is optional. If present, value MUST be “1.0”. Garmin assumes the protocol

version is 1.0 if this parameter is not present.

An OAuth realm should not be specified.

Get User ID

User ID must be used as a main user identifier.

Each Garmin Connect user has a unique API ID associated with them that will persist across multiple UATs. For

instance, if a user deletes their association through Garmin Connect and then, later, completes the OAuth

process to generate a new User Access Token with the same Garmin Connect account, the second token will

still have the same API User ID as the first token. Similarly, if a partner is managing multiple programs and the

user signs up for each of them, the API User ID returned for each of the UATs will match.

The API ID provides no identifying information and is not used in any other Garmin API, web service, or
system. There is no reason to ever pass the API User ID back to the API as user lookup will always be
performed using the User Access Token in the Authorization header.

Request URL to fetch API User ID
GET https://apis.garmin.com/wellness-api/rest/user/id

No parameters are required for this request.

Response: {"userId": "d3315b1072421d0dd7c8f6b8e1de4df8"}

https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce

