GARMIN INTERNATIONAL

Garmin Connect Developer
Program
OAuth Specification

Version 1.0.1

CONFIDENTIAL

Contents

User AUTNOFIZAtION (OAULN) ...eeeeeeeeee e e et e e e e e et a e e e e e e eeesabaeeeeeeeesaastbaeeeeseseesasranees 3
Garmin ConNEct User AULROTIZATIONcii ittt e et s e s sbe e e s bt e e sab e e sabeesbeeesabeeeneeas 3
Acquire Unauthorized Request TOken and TOKEN SECIELuviiiiiiiiiiiiiie ettt e s e e s sare e e s naaeee s 3
User Authorization Of REQUEST TOKEN........uiiiiiiiiee ettt e st e e s st e e e s abe e e s s sbeeesssnbeeesensbeeesenrees 6
Acquire User Access TOKEN anNd TOKEN SECIEL ...cccuiiiiiiiiie ettt e e e e rtae e e e st e e e e et a e e e seaaaeeeensbaeesannanees 7
Y =4 T oY= =T LU= £ PP PPPPPPPPPPPRE 9
LCT=1 B U L= o | PP PP P OTTTTOPPI 10

User Authorization (OAuth)
This section details the process of requesting access to wellness and activity data of Garmin Connect
accounts. Accessing data of a Garmin Connect account requires a User Access Token for each Garmin

Connect account. Garmin follows OAuth v1.0a.

Note:

Implementing OAuth signing manually can be quite complex. It is recommended that all partner integrations
leverage an existing OAuth client library. A list of OAuth libraries that supposed OAuth v1.0 by language is

maintained at https://oauth.net/1/.

User ID must be used as a main user identifier.

Garmin Connect User Authorization

The Garmin Connect user authorization process must be completed once for each Connect user to give
that user the opportunity to consent to sharing their Garmin data. The steps to perform Garmin Connect
user authorization are as follows:

Acquire Unauthorized Request Token and Token Secret

User Authorization of Request Token
Acquire User Access Token and Token Secret
Get User ID

— — — -
User I cConneact [| Partner '

craate Garmin Connect account

Ll

User Registration via OAuth 1.0a /

- 5.1 - Acquire Unauthorged Request Token and Secret

v:qua‘.t.’ako". requestTokenSacrat)'

_ redirect to Connect (reguestToken) 1| 5.2 - User Authorization of Request Token L\ﬁ

' request user authonzation for panner program

awhorzation with user name and password

requestToken, venfar \
>

(".,3 Aquire User Access Token and Secret (requestToken, verber) ‘[reguestTokenSecrat (s used 10 sign this requast b]

requestToken set nvaid
o

userAccessToken, userAccassTokenSecrat >

if the oAuth process i passed multiple imes only
the latest userAccessToken identifies the user and is vald

]

LreMIVE Permisson in account settings > [ﬂ\e USEr Can remove parmission here: Mips yconnect garmn comymodern/account w

Acquire Unauthorized Request Token and Token Secret

The first step in getting user consent to share Garmin data is acquiring a request token and token secret.

https://oauth.net/1/
https://oauth.net/1/

This request token does not have the ability to access data, nor is it user-specific yet.
Specification: https://oauth.net/core/1.0a/#auth stepl

URL (POST): https://connectapi.garmin.com/oauth-service/oauth/request token

Authorization header:

To get a Request Token it is required to send the request with a valid Authorization header according to
OAuth 1.0a
Common OAuth libraries handle the following steps automatically:

¢ Generate a Signature Base String

The Signature Base String is a consistent reproducible concatenation of the request elements
into a single string and needs to be encoded as defined in Parameter Encoding.

The Signature Base String contains the HTTP method (POST), the URL and the normalized
parameters.
The request parameters are sorted alphabetically and concatenated into a normalized string:

o oauth_consumer_key
The consumer key provided by Garmin.

o oauth_signature_method
The signature method which is used to sign the request (HMAC-SHA1).

o oauth_nonce
A random string, uniquely generated for each request.

o oauth_timestamp
The current timestamp (number of seconds since January 1, 1970 00:00:00 GMT).

o oauth_version
This must bet set to 1.0

Example:

Normalized parameters:

ocauth consumer key=cb60d7f5-4173-7bcd-ael02-
eb5ab52a6940ac&oauth nonce=kbki9sCGRwU&oauth signature method=HMACSHAl&oauth time
stamp=1484837456&0auth version=1.0

https://oauth.net/core/1.0a/#auth_step1
https://oauth.net/core/1.0a/#auth_step1
https://oauth.net/core/1.0a/#auth_step1
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://connectapi.garmin.com/oauth-service/oauth/request_token
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters

Signature Base String (percent-encoded):
POST&https$3A%2F%2Fconnectapi.garmin. com$2Foauth-

service%2Foauth%2Frequest token&oauth consumer key%3Dcb60d7£5-4173-7bcd-

ael2ebab2a6940acs26o0auth nonce%3Dkbki9sCGRwU%260auth signature method%3DHMACSHA
1%26oauth timestamp%3D1484837456%260auth version%3D1.0

* Calculate HMAC-SHA1 signature

The Signature Base String and the Consumer Secret are used to calculate the HMAC-SHA1 as
defined in RFC 2104 where the Signature Base String is the text and the key is the Consumer
Secret, followed by an '&' character (ASCII code 38). The resulting octet string needs to be

base64-encoded as defined in RFC 2045 section 6.8, then encoded like defined in Parameter
Encoding.

Example:

Consumer Secret, including trailing '&' character:
[3LFNJTLbGk5QqWVoypl8S2wAYCcSL586E2854

Base64-encoded and parameter-encoded signature:
$2BH1CpVX8Qgdw5DjfwOW30s7pfrY$3D

Create HTTP Authorization header

The OAuth Protocol Parameters are sent in the Authorization header in the following way:
o Parameter names and values must be encoded like defined in Parameter Encoding. o
Parameter values must be enclosed with double quote characters: " (ASCIl code 34) o
Parameters are separated by a comma character (ASCII code 44) and optional whitespace

Example:

Authorization: OAuth ocauth version="1.0", ocauth consumer key="cb60d7f5-4173-
Tbcd-ae02-e5a52a6940ac", oauth timestamp="1484837456",

ocoauth nonce="kbki9sCGRwU", oauth signature method="HMAC-SHAl",

ocauth signature="%2BH1CpVX8Qgdw5DjfwOW30s7pfrYs3D"

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters
https://oauth.net/core/1.0a/#encoding_parameters

A complete request sent with the command line tool ‘cURL looks like that:

curl -X POST -v -header 'Authorization: OAuth oauth version="1.0",
ocauth consumer key="cb60d7£5-4173-7bcd-ael2-e5a52a6940ac",

cauth timestamp="1484837456", ocauth nonce="kbki9sCGRwU",

ocauth signature method="HMAC-SHAl",

ocauth signature="%2BH1CpVX8Qgdw5DjfwOW30s7pfrYs3D""'
https://connectapi.garmin.com/oauth-service/oauth/request token

Response oauth_token=<request token>&oauth_token_secret=<request token

secret>

User Authorization of Request Token

Once a request token has been generated, user consent is required to allow the token to be exchanged
for an access token. This process occurs on the Garmin Connect oauthConfirm page as users only enter
their login credentials on the Connect servers and never on third-party sites. Once the authentication
process is complete, the user is redirected back to the partner's site. At this point in time the request
token is authorized with the user's account.

After the user authenticates with Garmin Connect and grants permission for partner access the partner
will be notified that the Request Token has been authorized and ready to be exchanged for an Access
Token. If the user denies access the Partner will not get the required ‘verifier’.

To make sure that the user granting access is the same user returning back to the partner to complete
the process Garmin Connect will generate a verification code. This will be a complex value passed to the
partner via the user and is required to complete the authorization process.

By default, Garmin Connect will honor the oauth callback URL configured when creating the consumer
key through the Developer Portal. This pre-configured callback URL may be overridden using the URL
parameter ‘oauth_callback’ if desired.

* oauth_token o The Request Token the user authorized or denied.
» oauth_verifier o The verification code or ‘NULL if the user denied access permissions

The callback URL may include partner provided query parameters. Garmin Connect will retain them
unmodified and append the OAuth parameters to the existing query. If providing an oauth_callback, please
make sure it will be encoded.

Specification: https://oauth.net/core/1.0a/#auth step2

https://oauth.net/core/1.0a/#auth_step2
https://oauth.net/core/1.0a/#auth_step2
https://oauth.net/core/1.0a/#auth_step2

URL (GET): https://connect.garmin.com/oauthConfirm

Request Parameters:
« oauth_token (required): The Request token from previous step
« oauth_callback (optional)

Response

<Redirect URL>?0auth_token=<request token>&oauth_verifier=<alphanumeric value>

Acquire User Access Token and Token Secret

Request tokens are valid to link to a user's account, but not to acquire their data. To get protected
resources a user access token is required. In this step, a user-authorized request token and verifier are
exchanged for a user access token and token secret. This user access token can be used to acquire the
authenticated user's protected resources using the Garmin APls. This access token should be stored and
will be used to request and/or associate summary data with a specific user. The user access token is valid
until the user removes access permissions on Garmin Connect or a new User Access Token is created for
the same Consumer Key and Garmin Connect user by performing the OAuth process again.

Specification: https://oauth.net/core/1.0a/#auth step3

URL (POST): https://connectapi.garmin.com/oauth-service/oauth/access token

Requesting the User Access Token is very similar to the steps to get the Request Token. The difference is
that the signature is calculated using the Request Token and Secret as well as the verifier from the

previous step.

Authorization header:

To get a UserAccessToken it is required to send the request with a valid Authorization header according
to OAuth 1.0a
Please see chapter O for details.

¢ Generate a Signature Base String from the following parameters:

o oauth_consumer_key
The consumer key provided by Garmin.

o oauth_token
The request token obtained in first authorization step

o oauth_signature_method

https://connect.garmin.com/oauthConfirm
https://connect.garmin.com/oauthConfirm
https://connect.garmin.com/oauthConfirm
https://oauth.net/core/1.0a/#auth_step3
https://oauth.net/core/1.0a/#auth_step3
https://oauth.net/core/1.0a/#auth_step3
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token
https://connectapi.garmin.com/oauth-service/oauth/access_token

The signature method which is used to sign the request (HMAC-SHA1).

o oauth_nonce
A random string, uniquely generated for each request.

o oauth_timestamp
The current timestamp (number of seconds since January 1, 1970 00:00:00 GMT).

o oauth_version
This must bet set to 1.0

o oauth_verifier
The verification code received from Garmin Connect in second authorization step

Example:

Normalized parameters:

ocauth consumer key=cb60d7£5-4173-7bcd-ael02-

eb5ab52a6940acs&oauth nonce=21RbgVyTAgh&oauth signature method=HMACSHAl&oauth time
stamp=1484913680&cauth token=760d85bd-b86e-4dab6-

b58bba57a542b23b&oauth verifier=wvDJIQmLSwY&oauth version=1.0

Signature Base String (percent-encoded):

POST&http%$3A%2F%2Fconnectapi.garmin.com%2Foauth-
service%2Foauth%2Faccess_ token&oauth consumer key$3Dcb60d7f£5-4173-7bcd-
ael02eb5a52a6940ac%26o0auth nonce%3D21RbgVyTAgh%26cauth signature method%3DHMACSHA
1%26oauth timestamp%3D1484913680%260auth token%3D760d85bd-b86e-4da6-
b58bbab57a542b23b%260cauth verifier%3DwvDJIQOmLSwY%260auth version%3D1.0

* Calculate HMAC-SHA1 signature

Please see first authorization step for details.

Example:

Consumer Secret and Request Token Secret, separated with '&' character:

|3LFNjTLka5QqWVoypl8SZWAYCSL586E285&VP2ZGuciICb7Lu769KWOPOWNMXXOLUZdAbq

Base64-encoded and parameter-encoded signature:

|ZSAEERGZNNOQanVthJ5xP4XCCM%3D

* Create HTTP Authorization header

Please see first authorization step for details.

Example:

Authorization: OAuth ocauth verifier="wvDJOmLSwY", oauth version="1.0",
ocauth consumer key="cb60d7f5-4173-7bcd-ael2-e5a52a6940ac",

ocoauth token="760d85bd-b86e-4da6-b58b-ba57a542b23b",

ocoauth timestamp="1484913680", oauth nonce="21RbgVyTAgh",

ocauth signature method="HMAC-SHAl",

ocoauth signature="zSAEERG2NNoQaVjVthJ5xP4XcCM%3D"

A complete request sent with the command line tool ‘cURL looks like that:

curl -X POST -v —header 'Authorization: OAuth ocauth verifier="wvDJQmLSwY",
oauth version="1.0", oauth consumer key="cb60d7£5-4173-7bcd-ae02e5a52a6940ac",
oauth token="760d85bd-b86e-4da6-b58b-ba57a542b23b",

cauth timestamp="1484913680", ocauth nonce="21RbgVyTAgh",

ocauth signature method="HMAC-SHAl",

ocauth signature="zSAEERG2NNoQaVjVthJ5xP4XcCM%s3D"'
https://connectapi.garmin.com/ocauth-service/oauth/access token

Response oauth_token=<access token>

&oauth_token_secret=<access token secret>
Signing requests
Requests to Garmin APls must be signed using both the provided consumer key/secret and the User

Access

Token/Secret acquired during the authorization phase described above. The User Access Token also
identifies the Garmin Connect Account the request refers to.

Specification: https://oauth.net/core/1.0a/#signing process

Request Parameters (placed in the Authorization header):

https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process

* oauth_consumer_key
The consumer key provided by Garmin.
* oauth_token
The User Access Token acquired during the authorization phase described in third authorization
step
* oauth_signature_method
The signature method the partner used to sign the request. This must be HMAC-SHA1.
* oauth_signature
The signature as defined in Signing Requests (https://oauth.net/core/1.0a/#signing_process) Signature
Base string example:

GET&https%3A%2F%2Fhealthapi.garmin.com%2Fwellness-api%2Frest%2Fepochs&oauth_consumer_key%3Deb60d6a5-0172-4bbd-

ae02-d5a5ea2140fa%260auth_nonce%3D2464567464%260auth_signature_method%3DHMAC-

SHA1%260auth_timestamp%3D1473668857%260auth_token%3D07c6dd26-a57f-4¢c39-8fd3-
6ac81d10fde6%260auth_version%3D1.0%26uploadEndTimelnSeconds%3D1473668824%26uploadStartTimelnSeconds%3D1473582424

* oauth_timestamp
As defined in Nonce and Timestamp: https://oauth.net/core/1.0a/#nonce
Requests where the timestamp differs more than 10 minutes from the current UTC time will fail.

* oauth_nonce
As defined in Nonce and Timestamp: https://oauth.net/core/1.0a/#nonce

* oauth_version
This parameter is optional. If present, value MUST be “1.0”. Garmin assumes the protocol
version is 1.0 if this parameter is not present.

An OAuth realm should not be specified.

Get User ID

User ID must be used as a main user identifier.

Each Garmin Connect user has a unique API ID associated with them that will persist across multiple UATs. For
instance, if a user deletes their association through Garmin Connect and then, later, completes the OAuth
process to generate a new User Access Token with the same Garmin Connect account, the second token will
still have the same API User ID as the first token. Similarly, if a partner is managing multiple programs and the
user signs up for each of them, the API User ID returned for each of the UATs will match.

The API ID provides no identifying information and is not used in any other Garmin API, web service, or
system. There is no reason to ever pass the APl User ID back to the API as user lookup will always be
performed using the User Access Token in the Authorization header.

Request URL to fetch APl User ID
GET https://apis.garmin.com/wellness-api/rest/user/id

No parameters are required for this request.
Response: {"userId": "d3315b1072421d0dd7c8f6b8eldeddf8"}

https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#signing_process
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce
https://oauth.net/core/1.0a/#nonce

